Tag Archives: 3D

3D_003_Process: Getting The Grenas Robot

Hi!

So Amelia, Yit Ling and I had separated the workload for each person to research more on one element of our installation.

So I am supposed to get the materials inspired by the ‘homemade Wobblebot’ bellow.

I went to Sim Lim and get the following:
– DC motor
– Battery pack
– Switch
– LED light

Other than that, I also want to try using some toys have the idea of taking out their materials for our robots.

I bought some car toys and did some experiment with balloon on it.

There are two types:

  1. The Orange Car
    It is one that after you pull the car back, it will move forward.
    How it normally goes:

    After attaching a balloon:

  2. The Yellow Chicken
    It is the one that you turn around to ‘charge’ the gear first and let it go.
    How it normally goes:

    How it moves with a balloon attached:

    For this one, the balloon tied to the head seem to be preventing the chicken from moving. It is because the head also plays part in moving along with the machine, as the head become to heavy the machine stops. Also, the big balloon on top but small wheels below make the center of gravity shifts up. It causes imbalance and thus chicken also tilts to the sides at some points of time.

  3. The Pink And Blue Caterpillar
    It has the same work as the yellow chicken, however has different shape and wheel.
    How it moves with a balloon attached

    This one is the most successful toy to be attache with a balloon. It keeps on moving despite the air resistance the balloon gave. It also has an interesting horizontal movement!Then I also tried to dismantle the caterpillar and tried to take out the components and move it to customize it. However as the shape is designed for the caterpillar body, it does not work well when I put the wheel and dynamo on other items. So, nah it does not work.

Despite the caterpillar can actually moves, it is not convenient to keep on turning the gear of the toys or keep on changing the direction of the toys. So it is concluded that I should move on and try using DC motor.

I connected the circuit and assemble it! And yeayyyy it works!
This is our very first model prototype that brought to class.

Later on, we tried to modify it and changed here and there. We eventually changed into CD disk and cover the top with a plastic bowl!

So that’s the initial on how we get the Grenas robot!
Thank you 😀

(More installation process coming up real soon!)

3D_003_Avatar: Grenas (Amelia, Natasya, Yit Ling)

Hi!

So for the final project, together with Yit Ling and Amelia, we created an animal avatar named Grenas. This avatar is the combination of three animals: sea anemone, anemonefish a.k.a. clown fish and starfish. (The ‘nas’ part of the name is actually short form of nemo, anemone, starfish.)

Relationship between the three creaturesHere is more details for our avatar! (click G5 Group F for the PDF version)

Thank you!

3D_003_In_Class: The Nemo Movement

Hi!

Continuing the research in my previous post, we were asked to dance and move our creature’s movement! For my, it would be my anaNEMOfish (clown fish).

My movement was ‘fluid’ and it can move in any direction (except backwards). As the Nemo move and dance around the sea anemone, I imagine the movement to be circular and random in any direction. At the same time, the Nemo can swim up and down as well.

Then for my movement sketch, I drew it in random circular and wavy shapes. The light blue represents the fish swims at a certain level, then dark blue represents it swimming down (deeper) while the light green is the opposite (swim up).

Next we were required to visualise and produce our movement by sculpting mahjong paper. My paper sculptor is shaped based on the sketch. The closeness of the paper shows that the Nemo moves around quite fast. In reality, the speed is really depend on each species and size 😀

It was a surprisingly a refreshing session 😀
Thank you!


3D Project 3
Research: Clown Fish (aNEMOnefish)
In Class: The Nemo Movement
(coming soon)

3D_002_Inspiration_and_Process: Sound Texturizer Trial and Error

Hi!
Okay so we are supposed to create our own sound texturizer, and looking through past years references, it is indeed not gonna be an easy one :’)


THE IDEATION

At first I tried to Youtube a lot of videos for inspiration.
This video is the one that somehow inspired and motivated me the most.

My favorite instrument is actually number 8 ‘Chateau Paulie’. It was not really an instrument but a village-sized art and musical installation.
It is basically the idea of using wind to move pipes which create sounds. And people can pull some ropes to adjust the ‘fan’ creating the sound they wants.
This makes me want to create a customizable sound texturizer.

My very first idea was to use water, and using the idea of water having different pitch when having different level. However as I thought more of it, I had the idea of sound travelling through water.

After some long thought, I finally decided to use the idea of sound texturized by being reflected through long tube and cylinder. And for the source of the sound, instead of the initial idea to blow something, I decided to move things around.


THE PROCESS

A. MATERIALS

First step is to find the sound reflectors: the carton cylinder and washing machine pipe.
Both have texturizing effect, with the washing machine pipe having a more hollow and deeper effect.

Next is to find the sound creator. I decided to make use of a biscuit tin can, creating a hole on the end to connect with the cylinder.

B. CREATION

Firstly, I drilled hole in the metal tin. It was quite time-consuming as we need to drill shape holes one by one before creating

Then, I created the insert part of the sound creator by dividing them into 3 different layers.

  1. Part 1: plastic case part to put in customisable things inside  and sound is created from friction between components and plastic
  2. Part 2: middle part to put in chains and wire sound dragging around the metal can
  3. Part 3: metal part to put in customisable components and the sound is created form friction between components and metal

Next, is to create the support for the cylinder and tin, they are made of boxes.

Then the next step is to connect the can tin—carton cylinder—washing machine pipe and put them on the support! YEAY

I also created ways to take out the components and allow customising them without taking out the whole thing.

TADAA the Soundtube is created!

C. INNER COMPONENTS

I want to have various type of components made of different type of materials.
Ranging from those creating louder friction sound like coins and macaroni to those creating softer friction sound like foam balls and foam pieces.

D. HOW SOUNDTUBE WORKS

The player rotate the sound creator either to rotate it in one direction or changing the direction repetitively.
When it is rotated, the components inside the sound creator will create sound out of friction. This sound will be reflected in the carton cylinder, changing it’s frequency as the sound becomes deeper and hollower. Afterwards, the sound will further reflected inside the washing machine pipe before being heard by the listener.
The rhythm and beat are adjusted by modifying the tempo of rotation.

E. HOW SOUNDTUBE SOUNDS
(Precaution! Sound recorded are loud! Better lower your computer volume)

At first the plastic case was filled with water.
I expected the sound to be like when I shake the plastic case only:

However after realising that the plastic case kind of dampen the water sound and the rotation create much slower movement than shaking the plastic case (which result in less intense sound being created). The sound became like this:

As the water sound became really soft and almost unheard, I decided to use solid components as the friction sound is louder.

And here is some different experiments on sound recording of the Soundtube!

Finally, out of curiosity, I put in my phone inside the whole sound creator and set an alarm and recorded the sounds.

Conclusions:

  • Switching the components between part 1 and part 3 caused differences! (most likely only when it has loud friction sound component i.e. no affect when both are soft friction sound components)
  • Adding components increased the intensity of the sound to a certain extent only i.e. the addition of component is not proportional to the increase of intensity (most likely because the surface area is already full of components and the speed of rotation is slow)
  • Using soft friction sound components did not really make the sound softer and dampened (maybe because the chains and wire frictions and part 2 still contributed loud sound)
  • For the alarm, the sound creator only actually amplified sound inside as it is made of metal and reflects sound! And the sound reflectors make the alarm sounds heavier and more further away, it also somehow created a limitation for the pitch of the sound i.e. sound at high pitch is limited and created like ‘echo-y’ effect (the sound reflectors really changed and texturised the initial sound!)

Thank you!


3D Project 2
Research: Hearing and Touch
In Class: Sound Fabrics and Soundscape
Inspiration and Process: Sound Texturizer Trial and Error
Final: THE SOUNDTUBE

3D_003_Research: Clown Fish (aNEMOnefish)

INTRODUCTION
Clown fish refer to 28 species of fish that are living around tropical coral reefs found in the warm water Indian, Pacific Oceans and the Red Sea. Here are some of them. Since the famous Disney movie Finding Nemo, the popularity of the clown fish increased and they are being breed by human. (Nemo is the Occelaris sp.) The Oceans, Reefs & Aquariums (ORA) is the leader in captive bred clownfish. Below is the pictures of the clown fish species with some addition developed by the ORA.

Clown Fish Species

KEY SENSES
1. SENSE OF SMELL
Like people, fish have noses. Water flows through holes called nares into two chambers. Each chamber contains a rose-shaped structure called a rosette. Odor molecules stick to cells on the rosette called neurons. Those neurons then shoot a quick signal to the brain. That’s how a fish detects a scent.
Upon hatching, baby clownfirsh rise up to the sea’s surface and begin the planktonic stage (floating on the sea) for about 11-12 days. Then, they will use their sense of smell to find their way home. They swim toward the scent of leaves from the islands’ trees. They also detect odors to find food, avoid predators and prepare for mating.
(!!) The sense of smell worsen as the water becomes more acidic! At the current rate, clown fish might lose their ability to ‘go back home’ and avoiding predator by the end of the century! frown

2. SENSE OF HEARING
For clown fish, the ability to hear is crucial as it makes them able to detect and avoid predator-rich coral reefs during the daytime (coral reefs are home to many species that can feed on small clownfish). They do this by monitoring the sounds of animals on the reef, most of which are predators to something just a centimetre in length.
(!!) Researchs show that clown fish in more acidic water showed no preference for moving away from threatening sound, while those exposed to normal levels of acidity move away from the perceived danger source. The acidity doesn’t seem to physically damage the fish’s ears, so maybe the damage is neurological, or maybe they are “stressed by the higher acidity and do not behave as they otherwise would.” This could seriously impact their survival in the long term. frown


BODY STRUCTURE

Clown Fish External Anatomy
Clown Fish Bone Structure

RANGE OF MOTION
It can freely move to any direction by moving its tail to move forward and side fins to help them steer.

Clown Fish Movement

A journal said that clown fish performed a bizarre little wiggle dance, flapping its fins while dodging and turning.
That creates fresh water circulation for the stationary anemone, allowing it to access more oxygenated water, speed up its metabolism, and grow faster. That’s also good news for the clown fish, which have more room to hide within the anemone.


SYMBIOSIS MUTUALISM WITH SEA ANEMONES
Symbiosis describes the special relationship between clown fish and sea anemones. They are the only fish that do not get stung by the tentacles of the sea anemone. Clown fish have a slimy mucus covering that protects them from the sea anemone. However, if this covering is wiped off of a clown fish, it will get stung and possibly be killed when it returns home to the anemone. The clown fish and the sea anemone help each other survive in the ocean. The clown fish, while being provided with food, cleans away fish and algae leftovers from the anemone. In addition, the sea anemones are given better water circulation because the clown fish fan their fins while swimming about.

(The video below is really good in showing the movement of different species of clown fish and different species of sea anemone, it also has part where the clown fish is trying to scare away human diver in order to protect the sea anemone)


INTERESTING FACTS

  1. HERMAPHRODITE (an organism that has reproductive organs normally associated with both male and female sexes)
    In a group of clownfish, there is a strict hierarchy of dominance. The largest and most aggressive female is found at the top. Only two clownfish, a male and a female, in a group reproduce through external fertilization. The clownfish are hermaphrodites, meaning that they develop into males first, and when they mature, they become females. Also, as mentioned earlier, more than one clownfish is able to live in a sea anemone. If the female clownfish is removed from the group, such as by death, one of the largest and most dominant males would become a female. The rest of the remaining males will move up a rank on the hierarchy.
  2. STING PROTECTION
    The clown fish is also famous for it’s seeming immunity to the stings of the sea anemone. Most clown fish are found either in or around sea anemones which the clown fish inhabits both for protection from predators but also the readiness of food.

OTHER FACTS

Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Perciformes
Family: Pomacentridae
Genus: Amphiprion

Size (L): 10cm – 18cm (4in – 7in)
Life Span: 4 – 8 years
Colour: Black, White, Orange, Red, Yellow
Diet: Omnivore
Favourite Food: Algae
Habitat: Tropical coral reefs
Main Prey: Algae, Plankton, Molluscs
Predators: Fish, Eels, Sharks

Bye bye

3D Project 3
Research: Clown Fish (aNEMOnefish)
In Class: The Nemo Movement
(coming soon)


Resources:

Animals, A. (n.d.). Clown Fish. Retrieved March 8, 2017, from https://a-z-animals.com/animals/clown-fish/
Hogan, T. (n.d.). Home. Retrieved March 8, 2017, from http://www.dive-the-world.com/creatures-clownfish.php
Investigation. (n.d.). Retrieved March 8, 2017, from http://tolweb.org/treehouses/?treehouse_id=3390
Leader, J. (2013, March 01). Clownfish, Sea Anemone Relationship: Fish Do Wiggle Dance To Help Out Host. Retrieved March 8, 2017, from http://www.huffingtonpost.com/2013/03/01/clownfish-sea-anemone-wiggle-dance_n_2789711.html

Increased CO2 Causes Clownfish to Lose Sense of Smell, Swim Toward Predators. (2010, July 14). Retrieved March 8, 2017, from http://worldgreen.org/increased-co2-causes-clownfish-to-lose-sense-of-smell-swim-toward-predators/
Kwok, R. (2015, November 01). When the nose no longer knows. Retrieved March 8, 2017, from https://www.sciencenewsforstudents.org/article/when-nose-no-longer-knows

Clownfish risk going deaf. (n.d.). Retrieved March 8, 2017, from http://www.hear-it.org/clownfish-risk-going-deaf
Richard, M. G. (2011, June 01). Ocean acidification makes clownfish go deaf (poor Nemo can’t hear predators anymore…). Retrieved March 8, 2017, from http://www.treehugger.com/clean-technology/ocean-acidification-makes-clownfish-go-deaf-poor-nemo-cant-hear-predators-anymore.html

Image credits:
http://s967.photobucket.com/user/oceanseeker/media/SHOP/CLOWNFISH-LOWRES.jpg.html
http://s967.photobucket.com/user/oceanseeker/media/SHOP/CLOWNFISH-LOWRES.jpg.html
https://image.slidesharecdn.com/clownfish-130530023920-phpapp01/95/clown-fish-3-638.jpg?cb=1369882379

Maldives QI, Part 5


https://www.google.com.sg/imgres?imgurl=https%3A%2F%2Fs-media-cache-ak0.pinimg.com%2F736x%2F93%2Fb0%2Fc5%2F93b0c58dd20a2045db6a43735d36f184.jpg&imgrefurl=https%3A%2F%2Fwww.pinterest.com%2FAlliekat1008%2Ffish%2F&docid=Lgrp0K69bWQFAM&tbnid=jhKYwWMQr1fblM%3A&vet=1&w=620&h=620&bih=708&biw=1517&q=clownfish%20cute&ved=0ahUKEwiniLDVg8zSAhVKfrwKHT91BMgQMwhzKE0wTQ&iact=mrc&uact=8#h=620&imgrc=jhKYwWMQr1fblM:&vet=1&w=620

3D_002_Final: THE SOUNDTUBE

Hi!

Here is the the final sound texturizer: THE SOUNDTUBE and its possible applications!
For PDF version: 002_NATASYA

I learnt to experiment a lot during this exercise! It was actually fascinating to try out different sounds 😀
I liked how it turned out to be really customizable.

An improvement I could do is to change the carton cylinder into PVC type or even metal cylinder so as to minimize the sound dampening and get a more echo-y sound. I imagined it to have an even more hollow and crisp sound. Then maybe the effect of the plug might be more obvious.
Another thing might be to change the method of creating sound by rotating to shaking the tube. Shaking might create a more intense and interesting sound instead of the plain rotation. Moreover, if I keep the idea of water inside, shaking it might allow the water sound to be heard more clearly.

Well, it was fun 😀
Will post the process and ideation real soon!

P.S. I was really scared that the texturizer will get confiscated at the airport as I bring them as hand carry, it has a lot of sharp wires and other metal elements! (I planned to do some updates at home but couldn’t find the time, sorry:( ). But good thing it didn’t get confiscated and I still have it with me now :’)


3D Project 2
Research: Hearing and Touch
In Class: Sound Fabrics and Soundscape
Inspiration and Process: Sound Texturizer Trial and Error
Final: THE SOUNDTUBE

3D_002_In_Class: Sound Fabrics and Soundscape

Hi!

A soundscape is a sound or combination of sounds that forms or arises from an immersive environment.

Part 1: In class Activity – Sound Fabric

During the in class activity, we listened to some sound and used the brown paper to express it in 3D form, sound fabric.

Pleasant sound: ADM Water Fountain

This sound is pleasant for me as it is somehow calming and give me the feeling of a japanese onsen and mountain area. So relaxing.

Peasant - ADM Water Fountain Sound Fabric
Pleasant Sound – ADM Water Fountain Sound Fabric

For me each water drop feels like it is in the shape of a line being curled (spiral) as it falls on another water surface.

spiral
spiral

I also feel like there are two significant water sound:
-the dominant one with lower pitch and heavier feeling
-the much less dominant with higher pitch and lower intensity

As such, I separate it into two main part (with roughly same overall size to say that both are equally important. One has thicker width representing the one with heavier feeling and the other has thinner width representing the lower intensity. Both has the same principle of spiral as each sound shaped like that in my mind.

The shape is being hung and the composition looks like it has a movement from up to down, representing the ‘fall’ of the water.

Unpleasant sound: Buzzer alarm

This sound is unpleasant for me as it is the sound of my annoying alarm. It really gives me the cringe and feels like each buzz is pierced through my hearing.

Unpleasant Sound - Buzzer Alarm
Unpleasant Sound – Buzzer Alarm Sound Fabric

So the twirl and pointy part represent the annoying and endless cringe of me whilelistening to that alarm. Each twirl represents one buzz and it is being twisted as it sounds like my hearing is being crumpled by it. I put them at constant distance as the duration between each buzz is constant. Also, the shape is a closed square showing that the buzz is enclosed and keep on repeating endlessly.

Part 2: Soundscapes

After the lesson, we were asked to create two A4 size soundscapes for two soundscape (can be different from in class activity).

Pleasant sound: ADM Water Fountain (same as previous part)

I decided to use the same sound as somehow, I like it more as I listen more to it. And somehow the sound sounds like the rain sound while I am inside a car/ room. It reminds me of my hometown, Bandung and childhood when I was inside a car and it was raining. It’s like being inside a warm and comforting place, feeling secure even though it was raining outside.

sdfs
Pleasant Sound – ADM Water Fountain Soundscape

I decide to use that thick plastic material that has a kinda neutral pitch with a quite heavy sound as previously I wanted to use thin plastic (the sound is too high pitch) or paper (the sound too light).

Still keeping the concept of the spiral, I cut all part to lines and spiral it. Then I connect both end to create an enclosed shape which represent the endless loop of the water as long as the fountain is turned on.

Unpleasant sound: Rolling Chair

This sound is unpleasant as it is quite annoying. Somehow when I listen to it, I picture myself studying/doing project in a room and there is someone who keeps on rolling the chair, disturbing my concentration.

2
Unpleasant Sound – Rolling Chair Soundscape

The sound of the rolling chair gives the sound of heavy friction between the wheel and surface. As such I used crumpled alumunium foil to show the uneven sound and friction. I chose this material as it has the friction with heavy feeling if i move my hand brushing through it.

And then there is the ‘ngik ngik’ squeaking  sound from the chair. This sound is not so significant hence it is only represented by small strip of transparent colored paper being folded into random direction unevenly (as the ‘ngik’ sound is uneven and irregular. I chose the material as the ‘ngik’ sound was clear and the color is not so dominating and can blend with the foil.

It was actually a fun activity for me as I have to try new things and use my imagination. Some sound evokes random memory while some just sound like a common sound with not much significant memory :D.



3D Project 2
Research: Hearing and Touch
In Class: Sound Fabrics and Soundscape
Inspiration and Process: Sound Texturizer Trial and Error
Final: THE SOUNDTUBE

3D_002_Research: Hearing and Touch

Hi!

So I’ve been researching on human senses, to be exact are hearing and touch.

HEARING (Audioception) is the ability to perceive sound by the sense of hearing.

How does the human sense of hearing work?

Ear anatomy:

screen-shot-2017-02-12-at-5-24-58-pm
Ear Anatomy

(Click here for interactive version)

Process of hearing:
Sound waves enter the ear canal, making the ear drum vibrate and moves the ossicles. The last bone of stapes knocks on the membrane window of the cochlea, causing fluid in the cochlea to move. This movement cause stereocillia to bend and create electrical signal that caused the auditory nerve to carry signal to the brain.

Interesting Facts:

  • Human ear still functions even when a person sleeps. It continues to pick up sound but the brain block them out.
  • Human ears are self-cleaning by producing ear wax (cerumen) which protects the ear from dust and friction.
  • Frequently cleaning ear wax can damage the tymponic membrane and lead to deafness!
  • Wearing headphones for an hour will increase the bacteria in ear by 700 times.
  • Ossicles is the smallest bone found in a human body.
  • The inner ear helps human balance as they walk or run.

TOUCH (Tactioception) is the body’s ability to feel physical sensation

How does the human sense of touch work?

Skin anatomy:

Sense of Touch
Sense of Touch

(Click here for the interactive version)

Somatosensory (touch receptors)
– mechanoreceptors (pressure, vibration, texture)
– thermoreceptors (temperature)
– pain receptors
– proprioceptors

Process:
Stimuli is accepted by somatosensory and the nervous system carry the information to the brain.

Interesting Facts:

  • Skin is the largest organ of a body, it makes up 15% of the body weight.
  • Skin is constantly renewing itself.
  • Touch can reduce blood pressure and heart rate.
  • Touch stimulates brain to release endorphin.
  • The sense of touch gets worse as human ages.
  • Touch is crucial for a baby’s development.

Similarity between frog and human?

It is really fascinating to find out that we are somewhat quite similar to frogs. It is not something I expected before.

  • Body structure
    The body structure of frogs and humans is comparable as have skin, bones, muscles and organs. Further, both frog and human bodies can be broken up into a head, a neck, a trunk and limbs.
  • Organs
    Both have lungs, kidneys, a stomach, a heart, a brain, a liver, a spleen, a small intestine and a large intestine, a pancreas, a gall bladder, a urinary bladder, a ureter, a cloaca. Males and females of each species have testes and ovaries respectively. In general, their organ structure is similar, but frogs have considerably less complex anatomies and they do not have ribs or a diaphragm.
  • Vertebrates with nervous system
    They have similar systems, including nervous, circulatory, digestive and respiratory. Both are classified as vertebrates, with a spine and nerves that spread across the body. Both frogs and humans have very developed senses of hearing, which is managed by the nervous system. However, frogs can only detect high-pitched sounds with their ears; low-pitched sounds are detected through the skin. Both frogs and humans also have developed senses of sight and smell.

    sdf
    Frog vs Human Body Part

    image
    Frog vs Human Digestive Organ

Summary:

image


3D Project 2
Research: Hearing and Touch
In Class: Sound Fabrics and Soundscape
Inspiration and Process: Sound Texturizer Trial and Error
Final: THE SOUNDTUBE