Final Project: I tried to be a Musician

Looking at my final project, I was rather sceptical about what it is i wanted to do, as I was out of ideas.

I spent quite a lot of time thinking about what I wanted to do, and realised looking for ideas just got me more and more distracted from actually finding an idea. Hence I decided to build on that feeling of wasting time and made a product that ‘wastes other people’s time’.

The entire project ‘I tried to be a musician’ is kind of looking at the idea of people doing things for fun, finding ‘useless’ talents that seem entertaining but at the end of the day, there is not much value added to the experience.

I kind of remembered some people making music videos with Calculators and the squeaky chickens (help, I never realised they are made by the same person). The kind of music videos where you look at them and realise ‘wow, you are so talented’ and immediately after ‘where the heck do you get the time to do this sort of things’.

So I decided lets make a musical instrument too, something easy to understand and grasp and make a jumble of sound, but hard to actually make something decent, to prompt others to try harder to make the product work for them, or give up instantly after understanding that it is going to be a waste of time.

I guess this project is really just to emulate that idea of having fun trying to solve a problem, but at the end of the day, you are just wasting time having fun. (Is that considered wasting time? who knows?)

The Making:

So the components of the project are relatively simple. It is a combination of two simple circuits, one for an ultrasonic sensor, and another for a buzzer:

Source: https://howtomechatronics.com/tutorials/arduino/ultrasonic-sensor-hc-sr04/

learn_arduino_fritzing.jpg

Source: https://learn.adafruit.com/adafruit-arduino-lesson-10-making-sounds/playing-a-scale

I found that by using a buzzer I technically can code for the entire keyboard is i find the list of numbers associated with the tone. By allocating a set distance the ultrasonic sensor and my hand, I essentially have a no-touch piano keyboard. Yay.

Taking it a step further, because why not? I duplicated the code by three, splitting them according by octaves. We only have two hands so I wish you luck trying to learn how to play this annoying child >:D

Pictures:

The setup for a single set of buzzer and ultrasonic sensor pair.

The there is the external pieces.

I first laser cut my pattern out:

 

Then after that i Spray painted the pieces:

Videos:

So Far there is two:

The range of the sound seems to similar i need to increase the range to make it more interesting.

Device of the Week 2: Iot

Image result for kuri mobile robot

Kuri The Mobile Home Security Robot by Mayfield Robotics:

Description

Kuri is an adorable home companion that acts like a ‘living’ robot. At first I assumed the Kuri was going to function like a google home device on wheels, but Kuri is slightly more than that as they make certain ‘expressions’ that make Kuri feel more alive. Krui has the ability to smile at you, follow you around and ‘speak’ to you. The adorable robot has an inbuilt function to track your motion and look up at you, and respond to its name with beeps and chirps. Subsequently as a home security device, Kuri has tiny cameras located in their ‘eyes’ to capture clips of whatever that goes on at home. Kuri also accting like a home device has the ability to answer certain questions that you ask, like ‘is it going to rain today?’ and they will shake their head with an adorable beep.

Kuri is also described to be a good nanny and entertain the kids, but so far, other then following them around and animating expressions, I am not too sure how kids will find Kuri entertaining.

Functions

Microphone: Voice Recognition to answer questions or comply with requests

Speakers: To ‘speak’ in chirps and beeps, to play music and podcasts found on internet.

HD camera: For security footage, and allowing live streaming.

Asynchronous motors: To allow Kuri to move around the house, Kuri also has sensors that will allow them to map the house, and not bump into objects

Capacitive touch sensor: For Kuri to recognise and react to human touch.

Pros

  • A mobile security system that patrols your house
  • Companionship
  • Responds to all commands intelligently
  • Adapt to your environment easily and recognize people’s voices, and differentiate people from pets/other Kuri bots.
  • When in need of recharging they automatically returns to their charging station for a power nap.

Cons

  • Kuri cannot climb stairs, sorry landed property folks
  • Kuri also has no way of helping in the case of an emergency (except inform you through messaging)

Analysis

Kuri really is just a mobile smart home. Since it already has most of the functions of an ordinary smart home device with the added ability to move about. Looking at the funstions that it has other then the surveillance function, the ability to move about is a bit redundant. Subsequently since Kuri is expensive without much additional functions of the usual google home device which is priced at less then $200 roughly it is really not an attractive product, which is the probable reason for the closure of the company last year.

Considering the company was focusing on the ‘animated’ part of Kuri to make them more alive, that is probably where most of their innovation went to. ( I wonder if this is the case, eliminating the animations, if it cheaper, easier and a more viable solution to add a google home device to a roomba. Obviously not as cute, but functionality wise will it sell better? )

References:

  • https://www.jameco.com/Jameco/workshop/ProductNews/life-with-kuri-a-real-live-robot.html