3D(II): The Peckebra PDF






Read a full version of our PDF here!

pdf

This project has taken Bridgel and I on a wild ride, pushing us in our boundaries and comfort zone in terms of technicality. It was the first time I actually used a screw and the woodcutter, working with hinges and new mechanisms. We also were not very clear on our final product, having to improvise and problem solve along the way to make things work. Thankfully, things work out in the end, and we are proud with our final outcome! Thank you Cheryl for your guidance this year 🙂

3D(II): Project 3 process journey 2

It was a huge challenge to think about an executable mechanism that would accurately represent the zebra’s anatomy and also incorporate the woodpecker idea. Bridgel and I went through a few changes to reach our eventual final product!

Idea development 1:

Studying the horse’s anatomy and reinterpreting it into gears and wooden planks

For idea one, we initially started with a single pole for a single bird. A stepping motion would push the pole up to “reset” the bird to the top of the pole. We also manage to capture the anatomy of the zebra to a certain extent.

Limitations:

  • After discussing and thinking through about this idea, we felt that the representation of the zebra and oxpecker is too direct. In terms of the expulsion of the blood and the painting stripes on the body
  • Only having one “oxpecker” at t  
    he spinal area would perhaps not be as effective as the bird would not be able to reach the dips of the back
  • Would the effect of one oxpecker be enough?
  • Unsure whether the stepping mechanism would work

We continued to work and develop this idea to our second development!

This time, we plan to add multiple wooden poles to have more birds in the model so that the birds will be able to reach a wider area of the body. With this improved design, the birds will be able to reach the user’s arms and shoulder blades.

In addition, we could add a wooden ring around it so the user can lift up the ring to reset the birds to the top of the pole.

Also, it is super expensive to create a bird that is made entirely out of wood (the planks we bought for the body already amounted to $40!). Cutting and sanding the wood will also take up more time, so we decided to stick to using styrofoam, which dimensions we followed from our successful prototype. Perhaps we could use putty or paint acrylic paint over it. We were still exploring the idea of using red ink to stain our users.

Limitations:

  • Cheryl commented that we could try to make the model adjustable for different heights and sizes
  • Some poles on the floor to peck the legs of the users?
  • Need supporting rigs to prevent the poles from shaking

We went shopping around Clementi and found the key to our model, HINGES!

Many hinges were used to do up our model

We also did more research!

We spent a lot time looking for ready made ball joints, but found an easy solution on Youtube. All we need is a ball, cups, and styrofoam. We plan to combine this with our wooden “legs”.

An olden gladiator headgear

The zebra’s eyesight is vastly different from ours, having no vision at its frontal part due to its eye placement on the sides. Perhaps we could expand on this idea, letting users wear a headgear (similar to the image above) that blocks the front part of our normal eyes, letting them experience a zebra’s sight.

Zebras in a herd

We also realise that the reason why the stripes act as a camouflage is because predators cannot differentiate the individual zebras. If we were to interpret this fact into our model, perhaps we could paint everything in one colour to confuse our users.

The end (for now!)

 

 

3D(II): Project 3 process journey 1

Bridgel and I sat down and discussed about the zebra and Oxpecker, thinking about the most interesting parts of the individual animals:

Mindmap:


We then looked through online sources for inspiration of our project.

Inspiration:

https://www.youtube.com/watch?v=azy-c6QXUCw

 

Idea two:

Ideation:

For our first idea, we wanted to focus on the “alarm” system that the Oxpecker has. Upon the incoming of a predator, the oxpecker would fly up and make calls which will alert the animals nearby, therefore incorporating this upward motion and sound element onto this idea. On the other hand, basing on Theo Jansen mechanism we wanted to recreate the anatomy of the zebra’s legs and movement. The bicycle model would incorporate its trotting movement.

For our second idea, we were thinking of doing an immersive experience of what the zebra face on a daily basis. This will be an accurate representation of being pecked by the Oxpeckers, where the user would stand in the centre of our model, and the spine bone will have the woodpecker mechanism pecking behind the user. The legs will be a simplified version of the horses anatomy.

The said body cast:

Woman wearing a leg brace

 

 

Spinal brace

 

Conclusion,

In the end, both of us decided to stick to idea two simply because it is easier to execute with our tight dateline. More importantly, we wanted to explore further and create something more original than the Jansen model which is already provided for on the internet. We went forward to do some prototyping to get more ideas about our model.

Prototyping:

Made out of styrofoam, spring, marble and a brass fastener

Miss Cheryl pointed out that the “beak” of this prototype is too sharp, so changing it would be important. Surprisingly, the mechanism works easily. The marble is good enough to act as a proper weight for the item to drop down the pole as well.

Wooden poles we got from daiso and Artfriend!

We used a

The anatomy of the leg have been posted before, but here is the GIF again because we used it for a reference.

3D(II): Dialogue in the Dark

 

Dialogue in the dark was an interesting experience. First, it starts out feeling constrained and very lost in the beginning corridors. It was mostly because I was infront of the line. Then, I am in a wide space in the park, before entering the boat ride with height feels shorter and I felt lower.

Then to the carpark with I got lost feels slighter wider but is constrained due to the items inside. The road with feels wider again, and then we head over to the marketplace which is a narrow and long space. Chinatown is a complex location and I did not know where we are headed too, then to the wide cafe.

 

Overall, Dialogue in the Dark was an interesting snippet on feel how it feels like to be a blind person. Without our sense of sight, naturally we would depend on other senses like kinesthetics and smell. For me, I relied on sound to travel around, listening carefully to our guide and the surrounding sounds to find out what kind of location it was. Looking back, it is funny that we can feel the sense of space though we can’t exactly see it. I was not that scared during the walk, and sometimes I wish that the experience can be intensified. For example, if the boat could actually move up and down, mimicking the waves of the river.

We also get to know more about the blind world and the difficulties we would never experience. It is eye opening to see how design plays a big role in aiding the the handicapped, and there are areas which are still developing. Like taking public transport (knowing the number of the buses and which stops is it).

This experience reminded me that we must never take our healthy bodies for granted, and to be much more sensitive to the handicapped community. I appreciate the times where the guide shared more about her personal experiences, which educated me on how to sensitively help these people when I see them in public. Also, it reveals to me the importance and uses of each of our other senses that we underestimate in our daily lives 🙂

3D(II): Sight and Kinaesthesia research (updated)

Zebra and an Oxpecker 

Relationship status: Complicated

Symbiosis describes close interactions between two or more different species. It is different from regular interactions between species, because in a symbiotic relationship, the two species in the relationship live together.

 

Bird gel and my animal pairing is the oxpecker and zebra!

Zebras

Just incase you forgot how a zebra looks like hahaa

Zebras are are several species of African equids (horse family) known by their distinctive black and white striped coats. The stripes are unique to each individual and come in different patterns. They are generally social animals that live in small harems to large herds. Interestingly, they also found in a variety of habitats, such as grasslands, savannas, woodlands, thorny scrublands, mountains, and coastal hills. However, we would be only focusing  on the African Zebras as the oxpecker is a native species there.

Oxpecker

The colours the bird have is interesting, and a sharp contrast between the black and whites of a zebra

Oxpeckers are endemic to the savanna of Sub-Saharan Africa. Both the English and scientific names arise from their habit of perching on large mammals (both wild and domesticated) such as cattle, zebras, impalas, hippopotamuses, or rhinoceroses. They consume ticks, small insects, botfly larvae, and other parasites.

Oxpeckers graze exclusively on the bodies of large mammals, and it is observed that certain species are preferred.

Mutualistic or Parasitic?

The oxpecker and its interactions with the mammals they have a relationship with are the subject of debate and ongoing research.

Mutualistic: A mutualistic relationship is when two organisms of different species “work together,” each benefiting from the relationship.

Oxpeckers land on rhinos or zebras and eat ticks and other parasites that live on their skin. The oxpeckers get food and the beasts get pest control. Also, when there is danger, the oxpeckers fly upward and scream a warning, which helps the symbiont (a name for the other partner in a relationship).

Parasitic: One organism (the parasite) gains, while the other (the host) suffers.

But recent evidence suggests that the oxpecker might be parasites instead, as they open and enhance the wounds on the animal’s back in order to drink the blood of their perches. There is also no statistically significant link has been shown between oxpecker presence and reduced ectoparasite load.

Oxpeckers also feed on the earwax and dandruff of mammals; though beneficial to humans, less is known about the possible benefits of this to the mammal. It is suspected that this is also a parasitic behaviour.

Some oxpecker hosts are intolerant of their presence, as elephants and some antelope will actively dislodge the oxpeckers when they land. Other species tolerate oxpeckers while they search for ticks on the face, which one author says “appears … to be an uncomfortable and invasive process.

Oxpeckers are the only bird in Africa documented to feed on blood!!!!!

Conclusion,

I think the ambiguous relationship between the zebra and oxpecker is very interesting, and it would definitely be a part of our model.

—————————————————————————————————————

2 Key senses for survival

Though it is not part of the 5 senses, a very striking feature of a zebra is its stripped camouflage. Unlike other forms of camouflage, its dazzle camouflage does not hide the zebra. Instead, it breaks up the zebras’ outline and makes it harder for predators to judge distances — throwing off their strikes when hunting.

It is rather difficult to find specific research on the zebra, so I decided to additionally look up on information about horses, which is part of the equid family, which belongs to the same family as zebras as well. It is crucial to take note that the horses’ senses are based on their status as prey animals, where they must be aware of their surroundings at all times.

  1. Sight

Zebras have excellent eyesight, having the largest eyes of any land mammal. Like most ungulates (hoofed animals) and equids, the zebras eyes are on the sides giving it an advantage as prey animals. This vision offers a wide, circular view, meaning they can detect stalking animals sneaking up from behind.

65° of a zebra’s view is binocular vision, which mean they can use both eyes together.

How binocular vision works!

 

285°  of an equid view is monocular vision where both eyes are used separately.  By using the eyes in this way, as opposed by binocular vision, the field of view is increased, while depth perception is limited. 

How horses and zebra sees!

As the binocular vision is directed down their nose and not straight ahead and the horse actually has a blind spot in front of its forehead. When a horse is grazing, his vision is directed at the ground in front of him and his monocular vision will be at work. Should he see something that warrants investigation, the horse will raise his head to bring the binocular vision into force. If the object was spotted in the horse’s side vision, he will turn and raise his head, or even whole body to look.

When a horse is grazing, his vision is directed at the ground in front of him and if he is relaxed, his monocular vision will be at work. Should he see something that warrants investigation, the horse will raise his head to bring the binocular vision into force.

As their depth perception is being compromised due to binocular vision,  it makes it more difficult to judge precisely how close the predator is (I imagine that a horse would think that if it can see the predator, then the predator is too close and would be on high alert).

2. Hearing

A horse’s hearing is good, and the pinna of each ear can rotate up to 180°, giving the potential for 360° hearing without having to move the head.This unique anatomical feature allows horses to focus on the direction from which the sound is coming, isolate it, and run the other way. Their hearing is 2 – 3 times better than a good hunting dog.

 

Noise impacts the behavior of horses and certain kinds of noise may contribute to stress: A 2013 study in the UK indicated that stabled horses were calmest in a quiet setting, or if listening to country or classical music. However, they displayed signs of nervousness when listening to jazz or rock music.

 

2) Range of Motion- skeletal / structural makeup

With four legs, horses can move in even more different ways, called gaits. They naturally walk, trot, canter, and gallop, depending on how fast they need to move. Every gait has a distinctive pattern, with one or more hooves leaving the ground at a time.

Our equines have about 205 bones in their body that provide structure, give rise to joints to allow for movement, and offer protection to vital organs.

A skeletal structure of a horse/zebra:

 

How a horse trots, notice all the joints

The running of a horse, like all equids, all 4 feet will leave the ground at some point

 

3) Include diagrams or sketches & videos

I think an interesting and unique thing about zebras is their use of tails, which swats pests away

 

 

Thats all, thank you!

 

 

3D(II) proj2: The Rain Man

Inspiration:

I was stumped at this project for quite awhile, not quite sure where to start due to a diversity of things we can do. As instructed by Cheryl, I decided to take a look at the structure of our ear to kick start the entire project.

 

The ear mostly works by vibrations, which is the medium that the sound energy travels through. I decided then to think about what kind of material produces similar vibrations, pushing myself beyond using strings or a drum-like instrument to do so.

Then an idea came up me – why not use an aluminium sheet? I remembered liking the wobbly sound it produces as a kid. Then I looked through Youtube for some inspiration:

The man in the video used the aluminium sheet like a drum, using a variety of materials to hit to create different sounds. I quite like the rubber balls, which is super eerie and extremely unique. I also realised that Foley Artists use aluminium foil to imitate thunder.

https://www.youtube.com/watch?v=KUiaq_Ku4yQ

These two videos is my main form of inspiration. I observe that the different length of strings create a different pitch. I like how the Marilyn Donadt used the aluminium  foil in place of the water that is used in the Aquaharp apparatus.

Then I decided to plan onto what to do. I know that the main function of the wobbly effect is something I want to capture in my model. So the next step is to think of what kind of mechanism would actually allow a large piece of aluminium foil to wobble?

Prototypes:

Firstly, I understood that moving the aluminium sheet up and down creates the sound that I had in mind. Similar to handmade prototypes of the aquaharp that I studied, and Marilyn Donadt’s instrument, a hallow pole is needed for the sound of go through. I also incorporated the sticks as I would like my instrument to have a different layers of sound to make it more interesting. This idea – though simple, works! And it also sounds like thunder.

I decided to make a small and very rough prototype to test it out because aluminium sheets are super expensive!!!!!! No budget for screw ups here.


Probably due to the small size of the sheet, the sounds created by the sticks were not so prominent. I was also not satisfied as with the idea was too simple, and the thin metal stripes was similar to my inspiration. Wanting to push myself, I continued to brainstorm on how to make the concept more interesting. The answer that I thought about was springs!

 

 

The main change from my second to final product was incorporating more elements like the cotton balls, lights and the box with beans, enabling to recreate the full effect of rain. I am really satisfied with the final product 🙂

Final product: The Rain Man

PDF is here!

The Rain Man

 

How it sounds like –

 

Having some fun with Fernwhere!

Raincoat to fit the rain theme

Oops… dropping Yuli’s model HAHAHAH

How it looks like with lights!

Areas of improvements:

– Lengthen the ropes with is meant to be the grip

– Really find and purchase flickering LED lights, which will be more realistic as the frequency of lightening won’t be as periodic

– Make the top of the box look nicer

– Perhaps add in metal balls with the cotton balls, creating a wider texture of sounds. I personally feel that bells will really suit this model as well, it would be like a rain call before the thunderstorm

Conclusion:

This project was super enjoyable for me. The research I have done showed me that sound can be recreated in so many ways, and to be restricted by basic instruments like piano, cello etc is really boxing one’s creativity! It has also pushed me in the sense where I had to use a wider variety of materials and equipment to help me get my final product, such as a drill.

P.s: I am just imagining my church using these kinds of apparatuses for worship instead of normal instruments haha

The end, thanks for reading this far 🙂

3d(II): Soundscapes

For this assignment, we are tasked to create a texture based on a good sound an a bad sound. Kind of a step up from last semester’s obscure cities project (which I enjoyed!) and our last project of create a sculpture out of smells.

I opened up my ears and really started to listen carefully. In my head, I started to think of my personal sounds. Musical instruments for example, or the sound of a pan fry cooking, or a dog panting… so on and so forth.

My good sound: 

 

 

This is the sound of a vending machine! Back in Singapore Polytechnic, the area where I used to study was surrounded by vending machines. It was a pleasant memory as it reminds me of the good times then.

 

img_2017-02-08-162957

The crumples represent the humming of the machine, whereas the irregular cut outs at the bottom represents the item falling onto our hungry or thirsty hands!

Then, we were given time to experiment at home to choose our own materials to represent the sound. I decided to go for aluminium, as I can imagine the presence of a huge metal thing containing more metal thingies for our needs!

img_2017-02-08-162854

img_2017-02-08-163001 The crumples represent the gentle hums of the machine. Though it is not captured, I also added a layer or two to show the different tones of it as well!

My bad sound:

 

The high peaks of our squeaky classroom chair raises the many hairs on my body.

img_2017-02-08-163006

The peak represents the high squeaks of the chair, and the form represents my disgust towards it

img_2017-02-08-163001

Irregular cuts that represent the other softer squeaks and sounds. The paper is crumpled to also show the inconsistent yet very present rolling sounds.

After the lesson, I decided to go with cardboard for my sound!

img_2017-02-08-162837

I personally feel that the cardboard represents the entire soundscape so much better. The rolling sounds are the ridges of the board, whereas the speaks are the top parts of the cardboard that still remain, it also peaks!

img_2017-02-08-162845

A wider shot of the work!

Overall, sound is another sense that is also underestimated in our human body. So far, this project reminds me of a condition called synesthesia, where people can see, taste or hear colours!

Read this article to find out more!

http://www.livescience.com/169-rare-real-people-feel-taste-hear-color.html

As an Art student, I wish I can live in their shoes for a day as well!

Upon reflection so far, I feel that I have to grow a lot in this area of interpreting our sense into various things. It is awesome to see how other classmates execute it, using such a variety of materials I never thought of utilizing and expressing things so accurately yet creatively. Perhaps the trick is not not think so much and just do it? Or maybe I just really need to take the time to explore in general.  Can’t wait to start on the next project!

Our senses: Touch and sound

How does human’s hear?

  1. Sound waves enter the outer ear through the ear canal to the eardrum
  2. The eardrum will vibrate from the incoming sound waves, these vibrations occurs in the middle ear with bones called the malleus, incus, and stapes, which amplifies or increase, the sound vibrations and send them to the inner ear.
  3. The vibrations cause the fluid to form traveling waves along the basilar membrane.
  4. Which moves to the hair cells near the wide end of the snail-shaped cochlea detect higher-pitched sounds, such as an infant crying. Those closer to the center detect lower-pitched sounds, such as a large dog barking.
  5. As the hair cells move up and down, it will bump against an overlying structure and bend. Bending causes pore-like channels, to open up and creates an electrical signal to the brain

Here is a video to explain everything above!

How does human’s feel?

Our sense of touch is controlled by a huge network of nerve endings and touch receptors in the skin known as the somatosensory system. This system is responsible for all sensing cold, heat, smooth, rough, pressure, tickle, itch, pain, vibrations, and more. Within the somatosensory system, there are four main types of receptors:

r12269

Mechanoreceptors: Pressure, vibrations, and texture

Thermoreceptors: Found in the dermis layer of the skin, it contains two categories of  hot and cold receptors.

(Cold receptors start to perceive cold sensations when the surface of the skin drops below 35° . They are most stimulated when the surface of the skin is at 25 °  and are no longer stimulated when the surface of the skin drops below 25° .)

(Hot receptors start to perceive hot sensations when the surface of the skin rises above 30 °  and are most stimulated at 45 ° beyond this, pain receptors take over to avoid damage being done to the skin and underlying tissues.

Pain receptors: These receptors detect pain or stimuli that can or does cause damage to the skin and other tissues of the body. There are over three million pain receptors throughout the body, found in skin, muscles, bones, blood vessels, and some organs. They can detect pain that is caused by a cut or scrape, or thermal stimuli (burn), or chemical stimuli (poison from an insect sting).

Proprioceptors: It senses the position of the different parts of the body in relation to each other and the surrounding environment. Proprioceptors are found in tendons, muscles, and joint capsules. This location in the body allows these special cells to detect changes in muscle length and muscle tension. Without proprioceptors, we would not be able to do fundamental things such as feeding or playing sports.

 

What is the similarity between the frog and humans?

Hearing:

  1. Frogs, like humans have tympanum

The tympanum are part of an ear structure
– However for the frog, it is located behind its eye and is used to transmit sound waves into the inner ear. Its unique structure also allows protection and to keep it hearing while it is submerged, which is an ability humans lack as we have an outer ear structure.

2. Neuromuscular junctions

Frogs and humans also both have neuromuscular junctions that transmit motor impulses from the nervous system to muscles.

*Interesting fact! Frogs can only detect high-pitched sounds with their ears; low-pitched sounds are detected through the skin.

 

 

 

 

F3D(ii): Once upon a scent

Incoming smells are first processed by the olfactory bulb, which starts inside the nose and runs along the bottom of the brain. The olfactory bulb has direct connections to two brain areas that are strongly implicated in emotion and memory:  the amygdala and hippocampus.

Unlike the other senses which requires to travel through the thalamic relay station to the brain, our sense of smell gets direct access to our olfactory bulb. It is the most primal and mysterious senses.

How smell affects our behaviour: 

– 80 percent of the flavours we taste come from what we smell

– Smell can influence our perception of time. Dr. Hirsch led studies into the way that smells can influence our perception of time. In one of the studies, 20 separate participants were exposed to a baby powder aroma, a coffee aroma, and no aroma at all. The coffee aroma produced a reduced perception of time, while the baby powder aroma produced a longer perception of time.

– Our perception of smell is largely determined by prior learning, personal history, and also cultural and geographic variations. For example, in North America and Europe lavender is perceived as a calming scent whereas in Japan, jasmine is associated with a relaxed mood instead.

– Smell can trigger memories, and also affect our emotions.

Mapping out smells

kate_mclean_smell

Kate Mclean is a Graphic Designer who creates smell maps of cities around the world. Wanting discover the importance of smell mattered to, she has already conducted these walks around Edinburgh, Glasgow, Paris, Amsterdam, Milan, Newport, Rhode Island, and New York City. Mclean wants to discover how smell effects our memory and place.

As quoted from her, “The smells there were cheese, wine, rain and Yve Saint Laurent perfume, because Parisian women take that away with them to remind themselves of Paris and where they come from,” McLean says.

Class activity – tasting chocolates

Ms Cheryl conducted an eye opening class activity about our sense of smell. In order to experience the basic sense smell firsthand, we blocked out our sight. A sense that we heavily rely on in our daily lives. She then passed around 3 different types of chocolates to which we have to carefully taste, smell, and describe.

Warning: I don’t like dark chocolate therefore the relevant reactions below!

Chocolate A:

chocoa

– Smelt it, does not smell sugary

– Upon placing it to my mouth, it remains tasteless for a few seconds. The texture of the chocolate was smooth and hard

– Suddenly to my dismay, it became bitter, meaning that it is dark chocolate

– As I bit onto it, it broke apart with dull snaps. Took a longer time to melt compared to the chocolates I usually consume

– As the chocolate began to disintegrate, there was a sudden surprise element as the chocolate started to become a little spicy. It was a very interesting “SO”!

Chocolate B:

chocob

– Surprised to feel that the chocolate is individually wrapped in plastic. With its ridges, it reminds me of the time when my secondary school friends Kimberlyn offered us Royce chocolate.

– The wrapper opens easily. Smelling it, I could already tell that it is dark chocolate as the scent is quite strong. It also smells bitter.

– The chocolate melts much more easily onto my palm, creating a circular ridge.

– I placed it onto my mouth and it is still slightly cold and hard. Melts quicker on my tongue than the previous chocolate and is much smoother in texture.

– The ridges slowly disintegrated and it started to become overwhelmingly bitter for me.

– Thankfully after melting more, it started to become slightly sweet. The taste becomes bittersweet and it slowly becomes more pleasant.

Chocolate C (my favourite!):

chococ

– Excited to hear the plastic wrap open. A sweet and salty smell wafts through the air, the smell is slightly familiar yet I cannot put a finger onto the scent.

– The chocolate I received was slightly cold, and was slightly wet due to the condensation. The chocolate also have ridges, with the top side coated with chocolate while the bottom part having salt granules.

– Guessed that it was chocolate potato chips just by the smell and texture itself, was elated to consume it but unsure whether I would still enjoy as I could still smell the bitterness of the chocolate. The chip melts onto my hand similarly to chocolate B.

– Placing it onto my tongue I had to restrain myself from biting onto it. The saltiness hit me first, then came in the bittersweetness of the chocolate. Twirling it around my tongue, the salt and bittersweetness made my tastebuds dance in elation.

– I bit onto it and there was a dull thud before it broke to many small pieces. The chocolate melts onto my tongue while the chip slowly disintegrated. The smoothness of the chocolate and rough texture of the chip created a pleasant experience.

– There was still a slight bitter aftertaste of the chocolate, however the aftertaste has a sweet and salty tinge

3D(ii) Project 1

For the first project of the semester, we had to create a model out of a bad scent and a good scent. The model have to be created out of plastic bottles, and we were thrown to interpret the smell onto our plastic model. Initially, I was at lost at what to do as perhaps I have never solely depended on my sense of smell before.

Bad scent: Dettol hand sanitiser

The clinical smell of Dettol just burns my lungs. Despite also being a product that helps people (similar to Axe Oil), the sharp notes and overpowering scent is invasive to my nostrils. It also brings back memories of hospital visits to my late grandfather, and the detergent my friend used throughout secondary school. A period of puberty and teenage drama.

f2d_800

Key words to describe scent:

Sharp, overpowering, sickly, acrid, strong, pungent

dettol

Good scent: Axe Brand Oil

A necessity for Singaporean households, axe oil is a significant part of my childhood. My mother uses this brand to calm my troubled stomach whenever I fell ill as child, bringing me back to innocent days where the love between my mother and I was more much tangible. Though the scent by itself is quite heavy, I enjoy its herbal notes and the complexity of the medicated concoction.

axe-brand-universal-oilKey words to describe scent:

Soothing, balmy, spicy, wafting, comforted, medicated, herbal notes

axeoil

Inspiration: 

Iris van herpen, fashion designer who utilizes plastic for fashion

f4fdb649e533b8c318de2f5f5940bd4a15-iris-van-herpen-fall-2016-ready-to-wear
iris-van-herpen-ss17-couture-fashion-design_dezeen_hero

I like how she manipulates the texture and shapes of the plastic to invoke different feelings of each outfit. I studied a few of her designs and explored the different ways to use plastic to interpret my chosen scents.

Finalised model: Disruption

img_2017-01-23-20-41-5

 

img_2017-01-26-101115

See my full PDF file here 🙂

3dii_1