Visual Pulse ( Process + Final )


Using a pulse sensor, this visual pulse is used to take in data of a person’s pulse rate, something normally felt and unseen. With the use of servos, the frequency of data produced of each person’s pulse rate affects the movement of objects beneath the fabric. This follows a rhythmic pattern that is shown through this device. A visualization of our pulse rate is an alternative to our palpitations that we feel by hand.


Initially, the main objective was to put the servo motor in a container filled with water, so that the movement of the cap would allow the water to create ripples. These ripples would form some pattern that is aligned to one’s pulse rate, and that I thought was an interesting concept I could explore.

(insert video of container of water with servo movement for proof of experiment)

As much as I almost got into making a servo move the water in a container, it also had its risks too. And one included – servo being spoilt and not being functional anymore. I made a hole at the bottom of the container, so that this would allow the cap to be placed on top.  I sealed the holes with some “Epoxy” – like a waterproof glue. It almost worked until I realize that the cap needed some room to move because it is directly attached to the servo.


On the other hand, my professor suggested I used an object that is shaped in a way where the height would dip-and-fall continuously ( with help of servo). I made several shapes of that, that would work and this is the outcome.

After that, I was also given suggestion to add a fabric that is stretchable, so that this would cover the movement and allow it to move nicely. I lasercut a box and made some holes at the bottom so that it would be possibly for me to sow the some parts of the fabric to the bottom of the box. This would give the shape of the object when it moves. Additionally, I thought of just creating a lid that has the stretch fabric over it, so that this would be easy for me to work around object in the box with removing fabric that I thought had to be sewn.

Finally, after I was done with putting the pieces together, here is the outcome. I am quite satisfied with the way it turned out. The code worked and it really did sensed someone’s pulse rate when they touch the pulse sensor. At the same time,  I think there is definitely room for improvement!

Things that worked

  • pulse rate follows accurate to a person’s palpitations
  • movement of the objects inside he box
  • the rod planted in the servo cap managed to move – sand the insides of rod to make it fit into the servo cap, which would allow the rod to move in proper direction

Things TO better IMPROVE

  1.  Hide electronics with same cloth
  2. Code the pulse sensor such that device remains still when not in use, the pulse rate will activate when it is being touched – takes away use of pulse sensor
  3. Construction of device can be better visually – tilt it, so that its shape resembles pulse rate out put
  4. Measurements of the clear acrylic box
  5. Be  economical with buying materials and constructing it properly – get measurements accurate first before putting them together